Visual Exploration of Self-Organizing Maps Using the Grand Tour and Linked Brushing
نویسنده
چکیده
The Self-Organizing Map (SOM) is a popular and well-studied unsupervised learning technique. Much work has been done recently on visualizing the results of the SOM algorithm, using static non-interactive approaches. This paper presents two new SOM visualization methods, based on the grand tour and linked brushing. These new methods use animation to show progress of the algorithm in the input space, and interactivity to let the user explore the link between the map in input space and feature space. The new methods were implemented in Java using Jsom, a new Java-based SOM package, and Orca, a Java-based data visualization package. Several different data sets are used to demonstrate the new methods.
منابع مشابه
Green Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملReducing topological defects in self-organizing maps using multiple scale neighborhood functions
In this paper, we propose a method of reducing topological defects in self-organizing maps (SOMs) using multiple scale neighborhood functions. The multiple scale neighborhood functions are inspired by multiple scale channels in the human visual system. To evaluate the proposed method, we applied it to the traveling salesman problem (TSP), and examined two indexes: the tour length of the solutio...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل